幂函数性质:当α 0时,幂函数y=x^α有下列性质:1、图像都经过点(1,1)(0,0);2、函数的图像在区间[0,+∞)上是增函数;3、在第一象限内,α 1时,导数值逐渐增大等。
一、正值性质
当α 0时,幂函数y=xα有下列性质:
1、图像都经过点(1,1)(0,0);
2、函数的图像在区间[0,+∞)上是增函数;
3、在第一象限内,α 1时,导数值逐渐增大;α=1时,导数为常数;0 α 1时,导数值逐渐减小,趋近于0;
二、负值性质
当α 0时,幂函数y=xα有下列性质:
1、图像都通过点(1,1);
2、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
3、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
三、零值性质
当α=0时,幂函数y=xa有下列性质:
1、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。
上一篇 下一篇